

MiniDyn Typ 9119AA1

Multicomponent Dynamometer up to 4 000 N, Cover Plate 39x80 mm

Multicomponent dynamometer for measuring the three orthogonal components of a force. Its very low threshold and the high sensitivity allow measuring extremely small forces.

- Small design
- High sensitivity and natural frequency
- Small temperature error
- Top plate made of Titanium
- For cutting force measurements in ultra precise machining
- For general multicomponent force measurement

Description

The dynamometer consists of four 3-component force sensors mounted under high preload between the cover plate and the two lateral base plates.

A low temperature error is obtained by this special mounting of the sensors. Each force sensor contains three crystal rings, of which one is sensitive to pressure in the y-direction and the two others to shear in the x- and z-directions. The forces are measured practically without displacement.

The outputs of the four mounted force sensors are fed to the 9-pole flanged socket. There are also multicomponent forcemoment measurements possible.

The four sensors are fitted so that they are ground-isolated. This largely eliminates ground loop problems.

The dynamometer is corrosion-resistant and protected against penetration by splashing water or cutting fluid. The dynamo-meter including connecting cable Type 1687B5 or Type 1677A5 meets the degree of protection IP67.

Application Examples

- Multicomponent force measurement of small forces
- Cutting force measurement in
 - precision machining
 - micromachining
 - Ultra-high precision machining of brittle materials

Measuring range (centrical)	F _x , F _y , F _z	kN	-4 4
single component	M_x , M_y	N⋅m	-125 125
	Mz	N⋅m	-250 250
Measuring range when compo-	F _x , F _y , F _z	kN	-2,0 2,0
nents act simultaneously			
(centrical), M_x , M_y , $M_z = 0$			
Calibrated measuring range			
100 %	F _x , F _y , F _z	N	0 4 000
10 %	F _x , F _y , F _z	N	0 400
1 %	F _x , F _y , F _z	N	0 40
Overload (centrical)	F _x , F _y , F _z	kN	-4,5/4,5
Threshold		N	<0,002
Sensitivity	F _x , F _z	pC/N	≈–26
	Fy	pC/N	≈–13
Linearity			
Meas. range 10% 100%		%/FSO	≤±0,3
Meas. range 0% <10%		%/FSO	≤±0,5
Hysteresis			
Meas. range 10% 100%		%/FSO	≤±0,3
Meas. range 0% <10%		%/FSO	≤±0,5
Crosstalk	$F_z \rightarrow F_x$, F_y	%	≤±2
	$F_x < -> F_y$	%	≤±2
	F_x , $F_y \rightarrow F_z$	%	≤±2
Natural frequency	f _n (x)	kHz	≈6,0
(without additional mass)	f _n (y)	kHz	≈6,4
	f _n (z)	kHz	≈6,3
Operating temperature range		°C	-20 7 0
Capacitance	F _x , F _y , F _z	pF	≈230
Insulation resistance (20 °C)		Ω	>10 13
Ground isolation		Ω	>108
Degree of protection EN60529		_	IP67 1)
Weight			
Dynamometer		kg	0,93
Cover plate		kg	0,30
Mounting surface		mm	39x80

Page 1/4

1) with connection cables Type 1687B5, 1689B5, 1677A5, 1679A5

measure. analyze. innovate.

Dimensions Pin Allocation Pin Output signals Output signals 1687B/1689B 1677A/1679A Nο M3x6/7.5Ground Ground 2 F_x $F_{x \, 1 \, + \, 2}$ 3 F_{x3+4} 4 Fy F_{v 1 + 4} 5 F_{y2+3} 6 7 8 F_z F_{z 1} $F_{z\;2}$ $F_{z\,3}$ 9 centerline min. 127 48 75 2 2 8 13.5,21.75 2 Н 17.8 108.8 Accessories for example cables Type 1679A..., 1689B. Accessories for example cables Type 1677A..., 1687B. Fig 1: Dimensions of dynamometer Type 9119AA1

Mounting

The dynamometer can be mounted with eight screws to any face-ground, clean mounting surface such as on a machine tool table. The measuring instrument can also be mounted on a magnetic plate. It must be noted that uneven contact surfaces may cause internal distortions, placing additional heavy stresses on the individual measuring elements and increasing the cross talk.

There are M3 tapped blind holes in the mounting plate for clamping the force-introducing components such as work-pieces or toolholder. The contact surfaces of the force-introducing parts must be surface ground to achieve good mechanical coupling to the mounting plate.

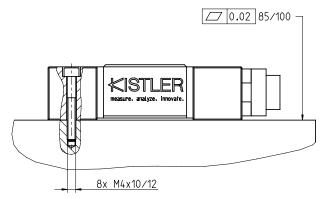
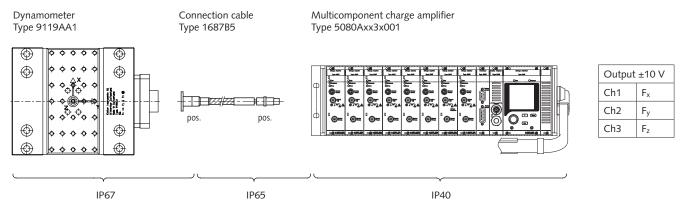


Fig. 2: Mounting of dynamometer Type 9119AA1

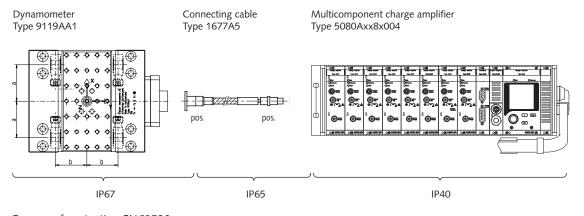
Page 2/4


Processing the Measurement Signals

Charge amplifier channels are also needed to build a complete measuring system (e.g. Type 5080A...). These convert the measurement signal into an electrical voltage. The measured value is exactly proportional to the force acting.

Data Acquisition and Analysis

Kistler offers with the Type 5697A1 DAQ system an universal and easy to operate package, consisting of a hardware for the data acquisition and the DynoWare software. For details see data sheet 5697A_000-745.


3-Component Force Measurement Fx, Fy, Fz

Degree of protection EN60529

Fig. 3: Measuring system for 3-component measurement F_x , F_y , F_z

Measuring System for 6-Component Force Measurement Fx, Fy, Fz, Mx, My, Mz

Output ±10 V		
Ch1	F _{x1+2}	
Ch2	F _{x3+4}	
Ch3	F _{y1+4}	
Ch4	F _{y2+3}	
Ch5	F _{z1}	
Ch6	F _{z2}	
Ch7	F _{z3}	
Ch8	F _{z4}	

Degree of protection EN60529

Fig. 4: Measuring system for 6-component measurement F_x , F_y , F_z , M_x , M_y , M_z

Values a,b for Type 9119AA2:

a	b
mm	mm
28,5	24,5

Page 3/4

Ordering Code Type/Art. No.

• Multicomponent dynamometer 9119AA1

up to 4 kN, cover plate 39x80 mm

Included Accessories

Mounting screws M4x25 (8 pieces) 65012704

Connecting Cables

sheath

Connecting cable, 3 wire, with flexible metal sheath
 Connecting cable, 3 wire, with flexible sheath
 Connecting cable, 3 wire, with flexible metal sheath and angle connector
 Connecting cable, 8 wire, with metal
 1687BQ02sp
 1689B5
 1677A5

1679A5